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Abstract

We explore the dipolar interactions between two separate nuclear spin ensembles in a mixture containing oil and water. Here we
expand initial results [C.A. Meriles, W. Dong, J. Magn. Reson. 181 (2006) 331.] to the case in which both systems have the shape of
flat, stacked disks. We find that—in spite of the strong inhomogeneity of the coupling dipolar field—the signal encoded in one of the
components can be made approximately proportional to the magnetization in the other. This allows us to use one of these systems
as a ‘sensor’ to indirectly reconstruct the resonance spectrum or to determine the relaxation time of the ‘sample’ system. In the regime
in which dipolar interactions are sufficiently strong, our method can be set to scale-up weaker signals in a non-linear fashion, which,
potentially, could allow one to introduce contrast or to improve detection sensitivity of less magnetized samples.
� 2007 Elsevier Inc. All rights reserved.

PACS: 76.60.Jx; 75.10.Hk; 76.20.+q

Keywords: Distant dipolar fields; Dipolar field microscopy
Because dipole–dipole interactions decay as the inverse
cube of the internuclear distance, dipolar effects between
non-neighboring nuclei are usually deemed exceedingly
small and therefore unimportant in most applications.
During the past decade, however, several investigations
made it clear that this argument must be handled very care-
fully [1–9]. The reason is that in the molecular ensemble
present in all NMR experiments, the number of terms in
the sum of all dipolar interactions with a given spin in-
creases with the square of the distance to this spin. Dipolar
couplings effective over macroscopic distances become
therefore non-negligible when the sample magnetization
is not isotropic, i.e., when contributions to the dipolar field
at the center of a sphere surrounding the spin of interest do
not exactly cancel. In most experiments to date, this is
accomplished by inducing a magnetization grating through
the application of a field gradient pulse at some stage of the
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NMR pulse sequence. This approach has been exploited
extensively by the Warren group [4–6] and by Bowtell
and collaborators [7–9] to develop a number of applica-
tions for either liquid-state NMR spectroscopy or medical
imaging.

The present study entails the investigation of the long-
range dipolar interactions between two neighboring but
separate spin ensembles, here in the form of an oil/water
mixture. Unlike prior reports [6,9–12], our strategy makes
use of the dipolar fields arising from the shape and relative
location of each ensemble. A central goal in these studies is
to control the dipolar coupling between the two spin
ensembles so as to indirectly probe one of them (playing
the role of an invisible sample) through its effect on the
other (operating as a sensor). This manuscript completes
and expands preliminary results [13] by considering an ar-
ray of a different geometry in which both oil and water
phases have the shape of flat, consecutive disks with the
main central axis aligned to the external magnetic field.
We demonstrate that the sensor signal can be made
approximately proportional to the sample magnetization
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making it possible to indirectly determine the sample reso-
nance spectrum or relaxation time. The result is attractive
because it proves that the sensor need not be immersed
within the sample but can, instead, sit on its surface. Inter-
estingly, the strength of the dipolar coupling between these
two systems is insensitive to the absolute dimensions of the
array. This leads us to envision a number of extensions of
this or related schemes, this time to manipulate dipolar
interactions between small, mesoscale systems.

The inset in Fig. 1 shows a picture of a setup similar to
that used in our investigation. The system can be modeled
as two (relatively) flat, stacked disks of distilled water (col-
ored) and oil (Fluka DC 200) with their central axes
aligned to the external magnetic field. In calculating the ef-
fect of the dipolar field of one system on the other, the pres-
ence of a dominant magnetic field B0 makes it possible to
neglect, as usual, all non-secular contributions to this field.
Further, since water (‘sample’) and oil (‘sensor’) resonance
frequencies differ by almost 5 ppm (1.8 kHz in our 9.4 T
magnet), one can consider the combined system as hetero-
nuclear and limit the contribution of the ‘sample’ dipolar
field over the ‘sensor’ volume to the component parallel
to B0 (assumed along the z-axis) [13]. Although obtaining
a formula that describes the spatial dependence of this lat-
ter field is difficult, a numerical calculation is straightfor-
ward [14]. Close to the interface, the z-component of the
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Fig. 1. Main: Water (sample) and oil (sensor) spin ensembles have the shape of
B0. The pulse sequence utilized to probe the sample magnetization is shown on
sample dipolar field for a variable ‘contact time’ tc. Hard p-pulses of alte
inhomogeneities of the main static field (while preserving the action of the
inspection. Throughout the sequence, tsel is kept fixed at a value equal to one f
The drawing at the right lower corner displays the dipolar field induced by the
the sample has a height h equal to the radius R. Note that the amplitude of th
sample system (and therefore remains unchanged if all dimensions in the arr
similar to that used in the experiments. Sample and sensor occupy comparable
half the height. The scale bar corresponds to 3 mm. For clarity, water at the bo
dipolar field reaches a magnitude equal to
Bmax

spl ¼ 5l0M ð0Þ
spl=ð4pÞ, where l0 is the vacuum magnetic per-

meability and M ð0Þ
spl denotes the sample equilibrium magne-

tization. This amplitude decays monotonously over the
sensor volume (assumed equivalent to that of the sample)
to reach a value approximately 30% that of its maximum
on the side of the sensor disk farthest away from the sam-
ple. At room temperature in a 9.4 T magnetic field, Bmax

spl

amounts to roughly 12 nT (0.5 Hz 1H frequency).
Fig. 2 displays the Fourier transform of the signal ob-

tained during the ‘reading period’ for different contact
times tc. Successive spectra exhibit a slow but clear phase
evolution that can be interpreted as the slow modulation
introduced in the signal (Hahn echo) due to the cumulative
effect of the sample dipolar field on the sensor. Notice that
in the pulse sequence of Fig. 1, field inhomogeneities or fre-
quency offsets are cancelled through the application of p-
pulses during the ‘decoding’ period; long-range dipolar
fields, however, remain effective due to the simultaneous
inversion of sample and sensor spins. No phase change
was observed in the measured signal each time the sample
magnetization was saturated prior to the application of the
pulse sequence, therefore confirming that the presence of
the sample dipolar field is crucial. The magnitude of this
field as measured from the observed phase evolution
amounts to 0.35 Hz, in qualitative agreement with that
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Fig. 2. Fourier transform of the sensor signal (oil) obtained after a variable contact time using the pulse sequence of Fig. 1. The sample dipolar field
induces a slow precession of the sensor magnetization observable through the progressive phase change of the echo. From top to bottom, the contact time
was (a) 145 ms, (b) 550 ms, (c) 750 ms, (d) 1000 ms, (e) 1250 ms, (f) 1600 ms. The average field on the sensor—approximately 0.35 Hz—is strong enough in
this case to induce a 180-degree phase shift of the sensor signal. The spectral bandwidth from (a) to (c) is 2.5 kHz. (g) ‘Subtraction-mode’ sensor signal at
tc = 0.8 s as a function of the sample dipolar field. A preparation protocol similar to that of Fig. 3 was used to vary the sample magnetization and, with it,
the magnitude of the relative dipolar field B0spl acting on the sensor. In agreement with Eq. (3), the sensor displays a sinusoidal response of the type
Ssnr / sinðpB0spl=2Þ, here shown as a solid line for comparison.
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expected from an average of the dipolar field over the sen-
sor volume (see Fig. 1).

The effect of the sample dipolar field on the evolution of
the sensor magnetization can be made more explicit by
adding consecutive acquisitions while alternating both the
receiver phase and initial direction of the sample magneti-
zation [15]. In the pulse sequence of Fig. 1, the latter is
accomplished by increasing in 180-degree steps the phase
of the second p/2-pulse during the selective sensor excita-
tion.[16] With this procedure, the sensor signal (after an
even number of scans) becomes

Ssnr /
Z

V snr

dr3M ð0Þ
snr sin csnrtcB

ðzÞ
spl

� �
ð1Þ

where csnr denotes the sensor gyromagnetic ratio, BðzÞspl is
the (secular) dipolar field due to the sample, M ð0Þ

snr is the
equilibrium sensor magnetization and the integral is cal-
culated over the sensor volume. Experimental results
illustrating our ability to measure the sample dipolar
field—and, therefore, its local magnetization—are shown
in Fig. 2g for a fixed contact time tc chosen, so that
csnrtchBðzÞspli 6 p=2 (the brackets are used to indicate aver-
age over the sensor volume). A simple protocol (similar
to that of Fig. 3) was used here to scale the sample mag-
netization (and, therefore, the dipolar field) prior to the
application of the sequence of Fig. 1. The sensor signal
is observed to evolve as expected, with amplitude
approximately proportional to (the sine of) the sample
magnetization [17]. The response ‘saturates’ in the region
of strongest sample dipolar field although the observed
dependence can be ‘relinearized’ by shortening the
‘decoding’ time tc (therefore forcing csnrtchBðzÞspli < p=2
even in the case of maximum sample magnetization).
Depending on the ratio between the contact time and
the sensor relaxation time this may (or may not) result
in a smaller signal amplitude (vide infra).

Dipolar couplings between the sample and sensor can be
used not only to probe the sample magnetization but also
to indirectly determine some of its basic NMR parameters.
For example, indirect measurement of the sample T1 via
the sensor becomes straightforward with the use of a simple
preparation protocol as shown in Fig. 3. Notice that diffu-
sion and relaxation effects (of both the sample and the sen-
sor) during the ‘decoding’ period remain approximately
constant throughout the process and, therefore, do not hin-
der an accurate measurement. The same principle can be
extended to indirectly determine the sample resonance
spectrum. In our experiment, this is accomplished by mod-
ifying the preparation protocol of Fig. 3a to probe in a
‘point-by-point’ fashion the in-plane evolution of the sam-
ple magnetization after selective excitation. Fig. 3c shows
the resulting evolution of the sensor signal: Fourier



Fig. 3. (a), (b) Indirect determination of the sample relaxation time via the dipolar field on the sensor. The pulse sequence of Fig. 1 was preceded by a
simple inversion-recovery protocol followed by a short purging time. Selective inversion of the sample spins was carried out by two consecutive p/2-pulses
spaced by half the period corresponding to the oil-water frequency difference. The sample relaxation time was 2.1 s in good agreement with the value
measured by direct observation. (c) Point-by-point determination of the sample resonance spectrum by observation of the sensor signal. A preparation
protocol similar to that shown in (a) but with a variable inter-pulse spacing was applied to monitor the in-plane evolution of the sample magnetization.
The contact time tc was 0.5 s.
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transform along this time axis leads to a �1.8 kHz-shifted
sample resonance peak in agreement with the measured
chemical shift of the sample (water) relative to the sensor
(oil) resonance frequency.

A facet of the scheme introduced here that is worth
exploring in some detail is the effect of relaxation on
the amplitude of the signal encoded in the sensor. Shown
in Fig. 4 is the evolution of the Fourier-transformed FID
as a function of the contact time tc. As before (see
Fig. 2g), subsequent acquisitions of the sensor magnetiza-
tion were co-added while simultaneously alternating the
detector phase and the initial orientation of the sample
magnetization. For contact times much shorter than the
inverse of the dipolar field (expressed in frequency units),
the peak amplitude tends to zero, as expected. At later
times, Eq. (3) predicts a sinusoidal growth [17] with its
first maximum occurring at a time tc ffi ðp=2ÞðcsnrhB

ðzÞ
spliÞ

�1

(approximately 0.8 s). In practice, however, the maximum
signal is observed at much shorter times (�0.2 s), when
the gain arising from a greater phase change of the sensor
magnetization is not overshadowed by transverse and lon-
gitudinal relaxation of both sample and sensor spins.

Qualitatively, the effect of relaxation on the signal
amplitude can be taken into account by introducing a time
dependence on the sensor (and sample) magnetizations.
Eq. (1) then writes
SsnrðtcÞ /
Z

V snr

dr3M ð0Þ
snr expð�tc=T snrÞ sin

Z tc

0

dtcsnrB
ð0Þ
splf ðtÞ

� �
ð2Þ

where Tsnr represents the transverse relaxation time of the
sensor and f(t) is a function that takes into account the de-
cay of the sample dipolar field during the ‘decoding’ peri-
od. This decay can be induced either by longitudinal
sample relaxation or the repeated application of p-pulses
affected by rf inhomogeneity. Fig. 4 shows the result for
the case f(t) = exp (�t/Tspl), with Tspl denoting the (effec-
tive) longitudinal relaxation time of the sample. Shown
for comparison is also the curve obtained through a numer-
ical simulation in which the sensor was modeled as an
aggregate of classical spins obeying Bloch equations; both
curves qualitatively reproduce the observed behavior
although overall agreement (particularly at short times) is
moderate. We presently ignore the causes but we speculate
that this is due to susceptibility effects at the interface and/
or artifacts in the selective excitation of the sensor magne-
tization due to modest shimming and rf homogeneity.

At long contact times, the observed behavior is domi-
nated by the transverse relaxation rate of the sensor. In
the presence of a relatively strong static field inhomogene-
ity such as that of our setup, spin diffusion does contribute
to induce a faster decay. As expected, the inset in Fig. 4



Fig. 4. Signal amplitude as a function of the contact time. In-phase spectra were obtained by pairing subsequent FID’s while synchronously alternating
the sign of the initial sample magnetization (see text). After a rapid initial growth, the amplitude diminishes exponentially. The dashed curve corresponds
to Eq. (2) with f(t) = exp (�t/Tspl) whereas the continuous curve indicates the result of a numerical simulation. Only one inversion pulse was applied
during tc. Inset: Decay of the signal due to diffusion can be mitigated by incrementing the number of inversion pulses. Shown for comparison are the
results using one and two inversion pulses during tc.
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shows that this effect can be partly mitigated by increasing
the number of inversion pulses (until the cumulative action
of rf inhomogeneity on the sample dipolar field precludes
further improvement [18]). We will soon make use of this
feature to explore different scenarios in which the ratio be-
tween the contact time tc and the sensor decoherence time
Tsnr is varied.

Assuming that the sensor has been chosen to provide the
best possible signal-to-noise ratio, Eq. (2) indicates that our
ability to boost detection sensitivity of the sample signal
depends critically on the product of the time
topt
c � p=2ðcsnrhB

ðzÞ
spliÞ

�1 (necessary to induce maximum mod-
ulation of the sensor magnetization) and its transverse
relaxation rate (Tsnr)

�1: full sensor sensitivity will be attain-
able when topt

c =T snr � 0:3 or smaller but will be correspond-
ingly reduced in other cases [19]. For instance, in Fig. 4 the
highest signal amplitude at �200 ms amounts to only a
small fraction (�10%) of the theoretical maximum (which,
in the absence of relaxation, corresponds to the ‘full’ water
signal [20] and occurs at the ‘optimum’ contact time
topt
c � 0:8s). Although indirect detection of the sample sig-

nal as shown here becomes obviously impractical in the
presented setting, the use of the sensor may be favored
in situations where stronger dipolar couplings make the
contact time significantly shorter or when detection sensi-
tivity in the sensor largely surpasses that possible in the
sample [13,21]. Note that in this latter scenario, a contact
time much shorter than the ‘optimum’ value may still make
indirect detection comparatively favorable.

A regime in which the contact time is much shorter than
the spin decoherence time can be exploited so as to deter-
mine the sample magnetization via the time needed to
induce in the sensor a predetermined phase change (as
opposed to detecting the phase evolution over a fixed
contact time). In this ‘inverse’ mode, the contact time required
in a sample with half the magnetization would last approx-
imately twice as long but the overall phase change in the
sensor signal would remain unaltered. The advantage is
that, under the right conditions, a weaker sample magneti-
zation can be probed almost without compromising detec-
tion sensitivity. To render this idea more formal, we write

tc ¼
/

csnr BðzÞspl

D E ; ð3Þ

indicating that for every local dipolar field hBðzÞspli the con-
tact time tc is chosen so as to induce in the sensor a phase
change / (6p/2). If, for simplicity, we assume [19]
Tsnr� Tspl, we use Eq. (2) (with f(t) = 1) to write

Ssnr B0spl

� �
/ M ð0Þ

snr sin / exp � tref
c

T snrB0spl

 !
: ð4Þ

Here B0spl ¼ hB
ðzÞ
spli=hB

ðzÞ
refi represents the local magnetic field

relative to that in a reference (which could be a sample
or section of the sample with a strong magnetization)
and tref

c indicates the time needed to induce in the latter a
phase change /. (Fig. 5) displays the normalized sensor sig-
nal S0snr ¼ SsnrðB0splÞ=Ssnrð1Þ as a function of the relative, lo-
cal dipolar field for different values of tref

c and Tsnr; in this
drawing the diagonal corresponds to the usual, inductive
detection where the signal-to-noise ratio scales linearly with
the amplitude of the sample magnetization. As long as the
contact time remains shorter than the sensor (and sample)
relaxation times, the curves indicate a slower loss of sensi-
tivity relative to that typical in standard detection methods.
In our experiment, we reach this regime by choosing
tref
c ¼ 300 ms (/ � p/5) and by applying a total of six p-

pulses during the contact time (which allows us to increase



Fig. 5. The magnetization of the sample (as compared to that of a
reference) can be determined via the time needed to induce a predeter-
mined phase shift of the sensor spins. The graph shows the normalized
sensor signal as a function of the relative sample magnetization B0spl (Eq.
(4), see text) for a sensor operated in this modality. The (dashed) diagonal
indicates a ‘linear’ response; ‘amplification’ of the signal due to weaker
sample magnetization is possible when the reference contact time is shorter
than the sensor relaxation time Tsnr (and Tspl). (a) With a reference contact
time of only 300 ms (/ = p/5), this regime can be reached by using six
inversion pulses during tc. Squares indicate experimental points; the solid
line corresponds to Eq. (4) with tref

c ¼ 300ms and Tsnr = 600 ms. (b) The
opposite scenario takes place when the number of inversion pulses is
reduced to only one. Experimental data (circles) and solid line
(tref

c ¼ 300ms and Tsnr = 200 ms in Eq. (4) show reasonable agreement.
(c) Calculated response for the case tref

c ¼ 800ms and Tsnr = 200 ms
corresponding to / = p/2. (d) Eq. (4) with / = p/2 and tref

c =T snr ¼ 0:1.
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Tsnr to �700 ms). This strategy fails when a longer tref
c (i.e.,

a greater phase change /) is necessary to increase the abso-
lute signal amplitude (see Eq. (4)) or when the interpulse
spacing in the CPMG train is long (resulting in a shorter
Tsnr).

In summary, this manuscript has explored the dipolar
interactions between two separate, macroscopic nuclear
spin ensembles having the shape of stacked, collinear cylin-
ders. We find that the sensor signal roughly scales with the
local sample magnetization thus making it possible to indi-
rectly determine the resonance spectrum or relaxation rate
in one of them via its effect on the other. When the decoher-
ence time of the sensor magnetization is sufficiently long
(or when the sample/sensor dipolar coupling is sufficiently
strong), our strategy can be altered to increase detection
sensitivity only at the expense of extending the contact
time. In an array where the sensor is free to move over
the surface of a larger, extended sample, this scheme could
be used to advantage to explore areas of the sample that
are weakly magnetized or as a way to introduce (image)
contrast [22]. It is worth stressing at last that the strength
of the coupling between the spin ensembles depends only
on the magnetization and relative geometry, which makes
this strategy appealing as the absolute dimensions of the
components diminish. Possibly the most exciting extension
of these ideas entails the control of dipolar interactions in
solids. At the low temperatures required for this implemen-
tation, high-sensitivity detection methods could be
exploited to indirectly probe the sample magnetization with
a spatial resolution defined by the size of the sensor [21].
Work along these lines is currently under way in our
laboratory.
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